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We investigate the possibility to suppress noise-induced intensity pulsations �relaxation oscillations� in
semiconductor lasers by means of a time-delayed feedback control scheme. This idea is first studied in a
generic normal-form model, where we derive an analytic expression for the mean amplitude of the oscillations
and demonstrate that it can be strongly modulated by varying the delay time. We then investigate the control
scheme analytically and numerically in a laser model of Lang-Kobayashi type and show that relaxation
oscillations excited by noise can be very efficiently suppressed via feedback from a Fabry-Perot resonator.
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I. INTRODUCTION

In many dynamical systems noise plays an important role
and influences the system’s properties and the dynamic be-
havior in a crucial way. Control of the noise-mediated dy-
namic properties is a central issue in nonlinear science �1�.

An often encountered effect of noise is the excitation of
irregular stochastic oscillations under conditions where the
deterministic system would rest in a stable steady state, e.g.,
a stable focus. The random fluctuations then push the system
out of the steady state. These noise-induced oscillations are a
widespread phenomenon and appear, for instance, in lasers
�2–6�, chemical reaction systems �7�, semiconductor devices
�8,9�, neurons �10�, and many other systems.

In practical applications the need arises to control the os-
cillations, for instance, by increasing their coherence and
thus the regularity of the oscillations. In recent years differ-
ent methods to control stochastic systems have been devel-
oped and applied to noise-induced oscillations in a pendulum
with a randomly vibrating suspension axis and external peri-
odic forcing �11�, stochastic resonance �12,13�, noise-
induced dynamics in bistable delayed systems �14,15�, and
self-oscillations in the presence of noise �16�. In the context
of coherence resonance �17,18�, time-delayed feedback in
the form originally suggested by Pyragas to stabilize un-
stable states in deterministic systems �1,19� has been demon-
strated to be a powerful tool to control purely noise-induced
oscillations �20�. This method couples the difference of the
actual state X�t��Rn and of a delayed state of the system
X�t−�� back into the system:

d

dt
X�t� = f„X�t�,t… − K�X�t� − X�t − ��� .

The time delay � and the �matrix-valued� control amplitude
K are the control parameters which can be tuned. While pre-
vious studies have shown that the delayed feedback method
can control the main frequency and the correlation time tcor
and thus the regularity of noise-induced oscillations in
simple systems �20–26�, as well as in spatially extended sys-
tems �27–29�, and deteriorate or enhance stochastic synchro-
nization of coupled systems �30�, in this paper we focus on
the suppression of stochastic oscillations. We analyze the
mean amplitude �or, more generally, the covariance� of the

oscillations and show that time-delayed feedback control can
decrease the mean oscillation amplitude for appropriately
chosen delay time and thus suppress the oscillations.

The paper is organized as follows. In Sec. II we study a
generic model consisting of a damped harmonic oscillator
driven by white noise and investigate the influence of de-
layed feedback. In this generic system we derive an analytic
expression for the mean-square oscillation amplitude in de-
pendence on the feedback and show how the oscillations can
be suppressed. In Sec. III we consider a semiconductor laser,
a practically relevant example, and show how optical feed-
back from a Fabry-Perot resonator, which realizes the
delayed-feedback scheme, can suppress noise-induced relax-
ation oscillations in the laser.

II. GENERIC MODEL

In this section we study a generic normal-form model for
which we are able to derive analytical results. Such results
have previously been obtained only for different models. We
consider a damped harmonic oscillator �whose fixed point is
a stable focus� subject to noise ��� and feedback control:

ż�t� = �� − i�0�z�t� + D��t� − K�z�t� − z�t − ��� �z � C� ,

�1�

where ��0 and �0 are the damping rate and the natural
frequency of the oscillator, respectively, D is the noise am-
plitude, K is the �scalar� feedback strength, and � is the delay
time of the control term. We consider Gaussian white noise

��t� = �1�t� + i�2�t� , ��i� = 0,

��i�t�� j�t��� = �ij��t − t�� ��i � R� .

In our particular system the delay term in Eq. �1� does not
induce any local bifurcations in the deterministic system for
the parameter ranges we consider �K�0,��0�. Thus, the
fixed point is stable in these parameter ranges.

A similar normal form �without noise� was previously
used to study the stabilization of unstable deterministic fixed
points by time-delayed feedback �31�, which is possible in
the same way as stabilization of unstable deterministic peri-
odic orbits �1,32–34�.
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The power spectral density of z has been calculated in
�23� and is given by �see Fig. 2�

S��� =
D2

2	

1

�� − K„1 − cos����…�2 + �� − �0 + K sin�����2 .

Figures 1 and 2 display the dependence of the power spectral
density on the delay time. With increasing delay new peaks
appear in the spectrum. These are related to new modes gen-
erated by the delay as will be shown later.

Before proceeding, we transform Eq. �1� into a rotating
frame z�t�=u�t�e−i�0t:

u̇�t� = �� − K�u�t� + Kei�0�u�t − �� + ei�0tD��t�

= au�t� + bu�t − �� + D�̃�t� , �2�

where a=�−K�R, b=Kei�0��C, and �̃�t�=ei�0t��t� is a
noise term with the same properties as ��t�. The purpose of
the transformation is to make the parameter a real, which
will be necessary later.

In �35� Küchler and Mensch analyzed Eq. �2� for real
variables. We will follow their approach and adapt it to com-

plex variables. Similar results for the Van der Pol oscillator
have been obtained independently in �36�. A different two-
dimensional system with noise and delay has been recently
studied in �37�.

We will calculate the autocorrelation function

G�t� = �u�s + t�u�s��

in an interval t� �0,��, where the overbar denotes complex
conjugate. In particular, this gives the mean-square ampli-
tude �r2�= ��z�2�= ��u�2�=G�0� of the oscillations. With the
Green’s function u0�t� solving

u̇0�t� − au0�t� − bu0�t − �� = ��t� ,

with u0�t�=0 for t�0, we can formally find a solution of Eq.
�1�:

u�t� = �
−


t

dt1u0�t − t1�D�̃�t1� . �3�

Using �3� we obtain

G�t� = �u�t̃ + t�u�t̃��

= D2�
−


t̃+t

dt1�
−


t̃

dt2u0�t̃ + t − t1�u0�t̃ − t2���̃�t1��̃�t2��

=
s=t̃−t1

2D2�
0




ds u0�s + t�u0�s�

	 2D2C�t� .

The Green’s function u0 can be calculated �35,38� by itera-
tively integrating Eq. �2� on intervals �k� , �k+1���:

u0�t� = 

k=0

�t/��
bk

k!
�t − k��kea�t−�k�.

From the definition of C and u0 it follows that C satisfies the
following equations:

C�t� = C�− t� , �4�

Ċ�t� = aC�t� + bC�t − �� �t � 0� , �5�

Ċ�t� = aC�t� + bC�� − t� �t � 0� . �6�

Using these three equations, we can find an ordinary differ-
ential equation for C:

d2

dt2C�t� = aC��t� − bC��� − t�

= a�aC�t� + bC�t − ��� − b�aC�� − t� + bC�− t��

= a2C�t� + abC�t − �� − abC�t − �� − �b�2C�− t�

= �a2 − �b�2�C�t� .

Here it was necessary to have a real a in order for the delay
terms to cancel. Thus C is of the form

C�t� = Ae�t + Be−�t,

with

FIG. 1. �Color online� Logarithm of the power spectral density S
as a function of the frequency � and the delay time � in gray scale
�color scale�. Parameters: �=−0.01, �0=1 �T0=2	�, D=1, and K
=0.2.
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FIG. 2. �Color online� Power spectral density S��� for different
delay times �. Parameters: �=−0.01, �0=1, D=1, and K=0.2.
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� = �a2 + �b�2 = ��� − K�2 − K2.

The complex coefficients A and B can be found from the
equations

C�0� = C�0� � R , �7�

Ċ�0� = aC�0� + bC��� , �8�

and

− 1 = �
0




ds
d

ds
�u0�s�u0�s��

= �
0




ds�u̇0�s�u0�s� + u0�s�u̇0�s��

= aC�0� + bC��� + aC�0� + b̄C��� . �9�

Solving Eqs. �7�–�9� for A and B gives the mean-square os-
cillation amplitude

G�0� = 2D2C�0� = �r2� = 2D2�Re�A� + Re�B�� = −
D2

2�

K2 + 2�2 − K2 cosh�2���
K cosh������ cos��0�� + K sinh����� + a�� + K cos��0��sinh�����

.

�10�

This is the main new result in this section. It is an analytic
result which allows us to analyze the effect of the control
term. Figure 3 displays analytic and numeric results for the
oscillation amplitude. The dependence on the control force K
is shown in Fig. 4.

The oscillation amplitude can thus be strongly modulated
by varying �. We can obtain the envelopes of the modulation
by setting the terms cos��0�� to their maximum and mini-
mum values ±1 in Eq. �10�:

G± =
D2

�

K sinh���� � �

K cosh���� ± a
.

Figure 5�a� displays �r2� and the envelopes versus �. The
mean-square oscillation amplitude is modulated as a function
of � with a period T0=2	 /�0. For small � �����1� the
maxima and minima occur at

�+ = nT0 and �− =
2n + 1

2
T0,

respectively. The smallest oscillation amplitude is reached at

�opt = T0/2.

To understand the behavior of the mean-square oscillation
amplitude as a function of the delay time �, one has to look
at the eigenvalue spectrum of the fixed point z=0 of Eq. �1�
�without fluctuations�. The ansatz z�t�
e�t in Eq. �1� gives
rise to a transcendental equation for the eigenvalues �:

� = �� − i�0 − K� + Ke−��. �11�

This equation can be solved using the Lambert function. The
Lambert function W is defined �39� as the inverse W�z� of the
equation

0 1 2 3 4 5 6

0T/τ
0

50

100

�2r�

analytics
simulations

FIG. 3. �Color online� Mean-square amplitude �r2� of noise-
induced oscillations �solid line, analytics; dots, numerics�. Param-
eters: �=−0.01, D=1, K=0.2, and �0=1 �T0=2	�.
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FIG. 4. �Color online� Mean-square amplitude �r2� of oscilla-
tions as a function of the delay time � for different K �analytic
solution�. Parameters: �=−0.01, D=1, and �0=1 �T0=2	�.
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WeW = z �z � C� . �12�

Since Eq. �12� has infinitely many solutions, the Lambert
function W has infinitely many branches Wn�z� indexed by n.
Using the Lambert function W the solutions of �11� are given
by

��n = Wn��Ke−��−i�0−K��� + �� − i�0 − K�� .

Figure 5�b� shows the real part of the spectrum versus �. As
� increases, different eigenvalue branches originating from
−
 approach the zero axis �albeit remaining �0� and then
bend away again. Since the real part of the eigenvalues cor-
responds to the damping rate of the respective mode, the
oscillation amplitude excited by noise is large if a mode is
weakly damped and small if all modes have rather large
�negative� damping rates.

Because Eq. �1� is linear and � is Gaussian noise, the
probability distribution p�x ,y�, where z=x+ iy, is also a
Gaussian distribution �37�. The rotational invariance �z�
=zei�� of Eq. �1� implies that p�x ,y� is invariant under rota-
tions, too. These two arguments lead to the probability dis-
tribution

p�x,y� =
1

2	
� 1

�x
2�y

2 exp�−
x2

2�x
2 −

y2

2�y
2
 ,

with

�x
2 = �y

2 =
1

2
�r2� .

Figure 6 shows the marginal distribution

p�x� = �
−





dy p�x,y�

for �=0 �dashed line� and �=�opt=T0 /2 �solid line�. The case
�=0 corresponds to no control, because the feedback term in

�1� vanishes. The case �=�opt realizes the optimal delay time,
where the oscillations are most strongly suppressed and the
distribution p�x ,y� is narrowest.

III. LASER MODEL

In this section we investigate the effects of feedback and
noise in a semiconductor laser. A laser with feedback from a
conventional mirror can be described by the Lang-Kobayashi
equations �40�. Other types of feedback have also been in-
vestigated �41,42�. One particular feedback realizes the de-
layed feedback control with an all-optical scheme �43,44�.
The feedback is here generated by a Fabry-Perot resonator. A
schematic view of this setup is shown in Fig. 7. A fraction of
the emitted laser light is coupled into a resonator. The reso-
nator then feeds an interference signal of the actual electric
field E�t� and the delayed �by the round-trip time� electric
field E�t−�� back into the laser.

Scaling �i� time by the photon lifetime �p�10−12 s, �ii�
carrier density �in excess of the threshold carrier density� by
the inverse of the differential gain GN times �p, and �iii�
electric field by ��cGN�−1/2, where �c�10−9 s is the carrier
lifetime �for details see �45��, one obtains a modified set of
nondimensionalized �45� Lang-Kobayashi equations �43� de-
scribing this setup:

d

dt
E =

1

2
�1 + i��nE − ei�K�E�t� − ei�E�t − ��� + FE�t� ,

T
d

dt
n = p − n − �1 + n��E�2, �13�

where E is the complex electric field amplitude, n is the
carrier density, � is the linewidth enhancement factor, K is

FIG. 5. �Color online� �a� Mean-square amplitude �r2� of oscil-
lations and �b� real part of the eigenvalue spectrum of the fixed
point as a function of the delay time �. The dashed lines in �a� mark
the envelope G±. Parameters: �=−0.01, D=1, K=0.2, and �0=1
�T0=2	�.
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FIG. 6. �Color online� Marginal probability distribution p�x�
without ��=0� and with ��=T0 /2� optimal control. Parameters: �
=−0.01, K=0.2, D=1, and �0=1 �T0=2	�.

FIG. 7. �Color online� Setup of a laser coupled to a Fabry-Perot
resonator realizing time-delayed feedback control.
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the feedback strength, � is the round-trip time in the Fabry-
Perot resonator, p is the excess pump injection current, T
=�c /�p is the time-scale parameter, FE is a noise term de-
scribing the spontaneous emission, and � and � are optical
phases.

The phases � and � depend on the subwavelength posi-
tioning of the mirrors. By precise tuning �=2	n and �
=2	m one can realize the usual Pyragas feedback control

− K�E�t� − E�t − ��� .

We consider small feedback strength K, so that the laser is
not destabilized and no delay-induced bifurcations occur. A
sufficient condition �43� is that

K � Kc =
1

��1 + �2
.

The noise term FE in �13� arises from spontaneous emission,
and we assume the noise to be white and Gaussian:

�FE� = 0, �FE�t�FE�t��� = Rsp��t − t�� ,

with the spontaneous emission rate

Rsp = ��n + n0� ,

where � is the spontaneous emission factor and n0 is the
threshold carrier density. Without noise the laser operates in
a steady state �cw emission�. To find these steady-state val-
ues, we transform Eqs. �13� into equations for intensity I and
phase � by E=�Iei� �see the Appendix�:

d

dt
I = nI − 2K�I − �I�I� cos��� − ��� + Rsp + FI�t� ,

d

dt
� =

1

2
�n + K

�I�

�I
sin��� − �� + F��t� , �14�

T
d

dt
n = p − n − �1 + n�I ,

where I�= I�t−��, ��=��t−��, and

�FI� = 0, �F�� = 0, �FI�t�F��t��� = 0,

�FI�t�FI�t��� = 2RspI��t − t�� �F��t�F��t��� =
Rsp

2I
��t − t�� .

Setting d
dt I=0, d

dtn=0, d
dt�=const, and K=0 and replacing

the noise terms by their mean values gives a set of equations
for the mean steady-state solutions I�, n�, and �=��t without
feedback �the solitary laser mode�. Our aim is now to ana-
lyze the stability �damping rate� of the steady state. A high
stability of the steady state, corresponding to a large damping
rate, will give rise to small-amplitude noise-induced relax-
ation oscillations whereas a less stable steady state gives rise
to stronger relaxation oscillations. Linearizing Eqs. �14�
around the steady state X�t�=X�+�X�t�, with X�t�= �I ,� ,n�,
gives

d

dt
X�t� = UX�t� − V�X�t� − X�t − ��� + F�t� , �15�

with

U = �
n� 0 I� + �

0 0
1

2
�

−
1

T
�1 + n�� 0 −

1

T
�1 + I�� � ,

V = diag�K,K,0� ,

where diag�¯� denotes a 3�3 diagonal matrix and

F = �FI,F�,0� .

The Fourier transform of Eq. �15� gives

The Fourier-transformed covariance matrix of the noise is

�F̂���F̂����†� =
1

2	
diag�2RspI�,

Rsp

2I�

,0���� − ��� ,

with the adjoint †. The matrix-valued power spectral density
S��� can then be defined through

S������ − ��� = �X̂���X̂���†�

and is thus given by

�

� �

� � �

� � �

� � �

�

�

�

�

�

�

SδI(ω)SδI(ω)

� � � �

� � � �

� � � �

ω

τ
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FIG. 8. �Color online� Analytical �top� and numerical �bottom�
results for the power spectral density S�I��� of the intensity for
different values of the delay time �. Parameters: p=1, T=1000, �
=2, �=10−5, n0=10, and K=0.002 �a typical unit of time is the
photon lifetime �p=10−11 s, corresponding to a frequency of 100
GHz�.
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S��� =
1

2	
M diag�2RspI�,

Rsp

2I�

,0�M†.

The diagonal elements of the matrix S are the power spec-
trum of the intensity S�I, the phase S��, and the carrier den-
sity S�n. The frequency power spectrum is related to the
phase power spectrum S����� by �46�

S��̇��� = �2S����� .

The laser parameters we consider in the following are
typical values for a single-mode distributed feedback �DFB�
laser operating close to threshold �43,46�.

Figures 8 and 9 display the intensity and frequency power
spectra, respectively, for different values of the delay time �,
obtained analytically from the linearized equations �top� and
from simulations of the full nonlinear equations �bottom�. All
spectra have a main peak at the relaxation oscillation fre-
quency �RO�0.03. The higher harmonics can also be seen
in the spectra obtained from the nonlinear simulations. The
main peak decreases with increasing � and reaches a mini-
mum at

�opt �
TRO

2
=

2	

2�RO
� 100.

With further increasing � the peak height increases again
until it reaches approximately its original maximum at �
�TRO. A small peak in the power spectra indicates that the
relaxation oscillations are strongly damped. This means that
the fluctuations around the steady-state values I� and n� are
small. Figure 10 displays exemplary time series of the inten-
sity with and without feedback. The time series with feed-
back show much less pronounced stochastic fluctuations.

Next, we study the variance of the intensity distribution as
a measure for the oscillation amplitude:

�I2 	 ��I − �I��2� .

This measure corresponds to the quantity �r2� which we have
considered in Sec. II. Figure 11 displays the variance as a
function of the delay time. The variance is minimum at �
�TRO /2; thus, for this value of � the intensity is most steady
and relaxation oscillations excited by noise have a small am-
plitude. This resembles the behavior of the generic model
�see Fig. 5�a��.

Figure 12 displays the intensity distribution of the laser
without �dashed line� and with �solid line� optimal control
�compare Fig. 6�. The time-delayed feedback control leads to
a narrower distribution and less fluctuations.

IV. CONCLUSION

In this paper we have shown that time-delayed feedback
can suppress noise-induced oscillations.

In the first part we investigated a generic normal-form
model consisting of a stable focus subject to noise and con-
trol. We found an analytic expression for the mean-square
amplitude of the oscillations. This quantity is modulated with
a period of T0=2	 /�0 in dependence on �. For �=T0 /2 the
oscillations have the smallest amplitude.

In the second part we considered a semiconductor laser
coupled to a Fabry-Perot resonator. In the laser spontaneous
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FIG. 9. �Color online� Analytical �top� and numerical �bottom�
results for the power spectral density S����� of the frequency for
different values of the delay time �. Parameters: p=1, T=1000, �
=2, �=10−5, n0=10, and K=0.002.
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FIG. 10. �Color online� Intensity time series with �top panel�
and without �bottom panel� control. Parameters: p=1, T=1000, �
=2, �=10−5, n0=10, and �=100�T0 /2.
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FIG. 11. �Color online� Variance of the intensity I vs the delay
time. Parameters: p=1, T=1000, �=2, �=10−5, n0=10, and K
=0.002.
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emission noise excites stochastic relaxation oscillations. By
tuning the cavity round-trip time to half the relaxation oscil-
lation period, �opt�TRO /2, the oscillations can be suppressed
to a remarkable degree. This is demonstrated in the power
spectra of the intensity and the frequency, where the relax-
ation oscillation peak has a minimum height at �opt. The
variance of the intensity distribution �I shows a minimum at
�opt; thus, the intensity distribution is narrowest at this value
of �.
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APPENDIX: ITO TRANSFORMATION

Ito’s formula describes how a stochastic differential equa-
tion �SDE� is transformed to new coordinates. Consider the
stochastic differential equation for x�t�:

dx�t� = a�x�t�,t�dt + b�x�t�,t�dW�t� .

Ito’s formula specifies the transformation to a new variable
y= f�x�. The SDE for y is given by

dy = df�x�t�� = a�x�t�,t�f��x�t��dt + b�x�t�,t�f��x�t�,t�dW�t�

+
1

2
b�x�t�,t�2f��x�t��dW2.

We will apply Ito’s formula to rewrite the laser equations for
the complex electric field E in terms of the amplitude A and
the phase �:

E = Aei�.

The equation for E without feedback is given by

d

dt
E =

1

2
�1 + i��nE + FE�t�

or written as a stochastic differential equation

dE =
1

2
�1 + i��nE dt +�Rsp

2
dW�t� ,

with the complex Wiener process dW=dWx+ i dWy. We de-
fine the new coordinates

� + i� = ln A + ln ei� = ln�Ex + iEy� .

Using Ito’s formula with

a�E� =
1

2
�1 + i��nE , b�E� =�Rsp

2
, f �E� = ln E ,

we find

d�� + i�� =
1

2
�1 + i��n

1

E
dt −

1

2

Rsp

2

1

E2dW2 +�Rsp

2

1

E
dW .

�A1�

For a complex Wiener process dW one can easily see that

dW2 = �dWx + idWy�2 = dWx
2 + 2i dWxdWy − dWy

2 = 0.

Here we used dWx
2=dWy

2=dt and dWxdWy =0 �47�. Thus, Eq.
�A1� simplifies to

d�� + i�� =
1

2
�1 + i��n exp�− � − i��dt

+�Rsp

2
exp�− � − i��dW .

Splitting this equation into real and imaginary parts and
transforming with Ito’s formula back to A=exp �, we obtain

dA = �1

2
nA +

Rsp

4A
�dt +�Rsp

2
�cos � dWx + sin � dWy� ,

d� =
1

2
n� dt +

1

A
�Rsp

2
�− sin � dWx + cos � dWy� .

Because the rotation is an orthogonal transformation, one can
understand the increments as new independent Wiener pro-
cesses

dWA = cos � dWx + sin � dWy ,

dW� = − sin � dWx + cos � dWy .

We have derived the laser equations in polar coordinates.
To include the delay terms does not change the derivation,
and we will just state the result here:

d

dt
A =

1

2
nA − K�A − A� cos��� − ��� +

Rsp

4A
+ FA�t� ,

d

dt
� =

1

2
�n + K

A�

A
sin��� − �� + F��t� ,

with
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I
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0.7

)I(p

no control
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FIG. 12. �Color online� Probability distribution of the intensity I
with and without the resonator �simulations�. Parameters: p=1, T
=1000, �=2, �=10−5, n0=10, and K=0.002.
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�FA�t�FA�t��� =
Rsp

2
��t − t�� , �F��t�F��t��� =

Rsp

2A2��t − t�� .

To obtain the equations for intensity I= f�A�=A2 instead of
the amplitude, Ito’s formula has to be applied again �of
course, this could be done in one step from the initial equa-
tions�. The amplitude equation is given by

dA = �1

2
nA − K�A − A� cos��� − ��� +

Rsp

4A
�dt

+�Rsp

2
dW�t� .

For a real stochastic process dW holds dW2=dt. Using Ito’s

formula with dW2=dt, f��A�=2A, and f��A�=2, we find

dI = �1

2
nA − K�A − A� cos��� − ��� +

Rsp

4A
�2A dt

+
1

4
Rsp2dt +�Rsp

2
2A dW�t�

and thus

d

dt
I = nI − K�I − �I�I� cos��� − ��� + Rsp + FI�t� ,

with

�FI�t�FI�t��� = 2RspI ��t − t�� .
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